Instance-Based Learning of Credible Label Sets

نویسنده

  • Eyke Hüllermeier
چکیده

Even though instance-based learning performs well in practice, it might be criticized for its neglect of uncertainty: An estimation is usually given in the form of a predicted label, but without characterizing the confidence of this prediction. In this paper, we propose an instancebased learning method that allows for deriving “credible” estimations, namely set-valued predictions that cover the true label of a query object with high probability. Our method is built upon a formal model of the heuristic inference principle underlying instance-based learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRDDS: Instance reduction based on Distance-based decision surface

In instance-based learning, a training set is given to a classifier for classifying new instances. In practice, not all information in the training set is useful for classifiers. Therefore, it is convenient to discard irrelevant instances from the training set. This process is known as instance reduction, which is an important task for classifiers since through this process the time for classif...

متن کامل

ML-KNN: A lazy learning approach to multi-label learning

Multi-label learning originated from the investigation of text categorization problem, where each document may belong to several predefined topics simultaneously. In multi-label learning, the training set is composed of instances each associated with a set of labels, and the task is to predict the label sets of unseen instances through analyzing training instances with known label sets. In this...

متن کامل

An Effective Approach for Robust Metric Learning in the Presence of Label Noise

Many algorithms in machine learning, pattern recognition, and data mining are based on a similarity/distance measure. For example, the kNN classifier and clustering algorithms such as k-means require a similarity/distance function. Also, in Content-Based Information Retrieval (CBIR) systems, we need to rank the retrieved objects based on the similarity to the query. As generic measures such as ...

متن کامل

Active Learning with Multi-Label SVM Classification

Multi-label classification, where each instance is assigned to multiple categories, is a prevalent problem in data analysis. However, annotations of multi-label instances are typically more timeconsuming or expensive to obtain than annotations of single-label instances. Though active learning has been widely studied on reducing labeling effort for single-label problems, current research on mult...

متن کامل

Incorporating Prior Knowledge into Boosting for Multi-Label Classification XiaoWang

Multi-label learning deals with the problem where each instance may belong to multiple labels simultaneously. The task of the learning paradigm is to output the label set whose size is unknown a priori for each unseen instance, through analyzing the training data set with known label sets. Existing multi-label learning algorithms are almost based on the purely data-driven method. The larger the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003